Movie Recommendation System – 1st way – with source code – 2022

So one of the most awaited blogs is finally here. Today we will be building a Movie Recommendation System that will produce very good results in very less lines of code. So without any further due.

Let’s do it…

Step 1 – Importing packages required for Movie Recommendation System.

import pandas as pd

Step 2 – Reading input data.

df1 = pd.read_csv('',sep='\t')
df1.columns = ['user_id','item_id','rating','timestamp']
Movie Recommendation System

Step 3 – Reading Movie titles.

df2 = pd.read_csv('Movie_Id_Titles')
Movie Recommendation System

Step 4 – Merging movie data and movie titles.

df = pd.merge(df1,df2,on='item_id')
  • We are merging both data frames on ‘item_id’ which is present in both data frames.
Movie Recommendation System

Step 5 – Grouping same movie entries.

rating_and_no_of_rating = pd.DataFrame(df.groupby('title')['rating'].mean().sort_values(ascending=False))
  • We are grouping movies here and taking the mean of all ratings given to them and then we are sorting them by their mean rating.
  • You can see that in the result below a crap movie ‘They made a criminal’ is showing up which might have got a rating from only one person and that too 5 stars. That’s why its mean is also 5.
Movie Recommendation System

Step 6 – Adding a column of no. of ratings.

rating_and_no_of_rating['no_of_ratings'] = df.groupby('title')['rating'].count()
  • Adding a column of no. of ratings.
  • We are calculating the no. of ratings by using the count method of a data frame.
Movie Recommendation System

Step 7 – Sorting on no. of ratings.

rating_and_no_of_rating = rating_and_no_of_rating.sort_values('no_of_ratings',ascending=False)
  • Simply sort by no. of ratings.
  • And now we see some genuine results.
  • Star Wars which is a very famous movie has got a mean of 4.35 as a rating from 583 users.
Movie Recommendation System

Step 8 – Creating a pivot table.

pt = df.pivot_table(index='user_id',columns='title',values='rating')
  • Creating a pivot table.
  • In this pivot table users go along rows and movies go along columns.
  • Nan represents that, that user has not given any rating to that movie.
Movie Recommendation System

Step 9 – Checking movie names.

  • Simply printing all movie names we have.
Movie Recommendation System

Step 10 – Live Prediction.

test_movie = input('Enter movie name --> ')

movie_vector = pt[test_movie].dropna()
similar_movies = pt.corrwith(movie_vector)

corr_df = pd.DataFrame(similar_movies,columns=['Correlation'])
corr_df = corr_df.join(rating_and_no_of_rating['no_of_ratings'])

corr_df = corr_df[corr_df['no_of_ratings']>100].sort_values('Correlation',ascending=False).dropna()
  • While testing I added ‘Star Wars (1977)’ as a test movie.
  • Pick its vector from the pivot table above.
  • Use that vector and correlate it with other movies using corrwith() and it will give its correlation with other movies based on user ratings and store it in similar_movies.
  • After that create a data frame as shown below and again merge no_of_ratings in it to take at least 100 ratings as the threshold.
  • Sort the results based on correlations and BOOM here are the results.
  • We can see the results, all these movies are somehow related to Star Wars.
  • Empire Strikes Back, Return of the Jedi, both of them are related to Star Wars.
Movie Recommendation System

Download Source Code and Data for Movie Recommendation System…

Do let me know if there’s any query regarding Movie Recommendation System by contacting me on email or LinkedIn.

So this is all for this blog folks, thanks for reading it and I hope you are taking something with you after reading this and till the next time ?…


Check out my other machine learning projectsdeep learning projectscomputer vision projectsNLP projectsFlask projects at

Leave a Comment

Your email address will not be published.