Question
Given an array nums containing n distinct numbers in the range [0, n], return the only number in the range that is missing from the array.
Example 1:
Input: nums = [3,0,1] Output: 2 Explanation: n = 3 since there are 3 numbers, so all numbers are in the range [0,3]. 2 is the missing number in the range since it does not appear in nums.
Example 2:
Input: nums = [0,1] Output: 2 Explanation: n = 2 since there are 2 numbers, so all numbers are in the range [0,2]. 2 is the missing number in the range since it does not appear in nums.
Example 3:
Input: nums = [9,6,4,2,3,5,7,0,1] Output: 8 Explanation: n = 9 since there are 9 numbers, so all numbers are in the range [0,9]. 8 is the missing number in the range since it does not appear in nums.
Constraints:
n == nums.length1 <= n <= 1040 <= nums[i] <= n- All the numbers of
numsare unique.
Follow up: Could you implement a solution using only O(1) extra space complexity and O(n) runtime complexity?
Python Solution
class Solution:
def missingNumber(self, nums: List[int]) -> int:
n = max(nums)
s1 = sum(nums)
s2 = n*(n+1)//2
if 0 not in nums:
return 0
elif s1==s2:
return n+1
else:
return (s2 - s1)

![[Solved] You are given an integer n and an integer start. Define an array nums where nums[i] = start + 2 * i (0-indexed) and n == nums.length. Return the bitwise XOR of all elements of nums.](https://machinelearningprojects.net/wp-content/uploads/2022/09/Leetcode-solutions-MLP-Feature-Image-1024x536.webp)