Question
There is an integer array nums
sorted in ascending order (with distinct values).
Prior to being passed to your function, nums
is possibly rotated at an unknown pivot index k
(1 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,5,6,7]
might be rotated at pivot index 3
and become [4,5,6,7,0,1,2]
.
Given the array nums
after the possible rotation and an integer target
, return the index of target
if it is in nums
, or -1
if it is not in nums
.
You must write an algorithm with O(log n)
runtime complexity.
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0 Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3 Output: -1
Example 3:
Input: nums = [1], target = 0 Output: -1
Constraints:
1 <= nums.length <= 5000
-104 <= nums[i] <= 104
- All values of
nums
are unique. nums
is an ascending array that is possibly rotated.-104 <= target <= 104
Python Solution
class Solution: def search(self, nums: List[int], target: int) -> int: if nums==None or len(nums)==0: return -1 l = 0 r = len(nums)-1 while l<r: m = l +(r-l)//2 if nums[m]>nums[r]: l = m+1 else: r=m start = l l = 0 r = len(nums)-1 if target>=nums[start] and target<=nums[r]: l = start else: r=start-1 while(l<=r): m = l+(r-l)//2 if nums[m]==target: return m elif target<nums[m]: r=m-1 else : l=m+1 return -1