Leetcode Solutions

Leetcode solutions MLP Feature Image

[Solved] Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.

Question Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path. Note: You can only move either down or right at any point in time. Example 1: Input: grid = [[1,3,1],[1,5,1],[4,2,1]] Output: 7 Explanation: Because the path 1 → 3 […]

[Solved] Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path. Read More »

Leetcode solutions MLP Feature Image

[Solved] You are given an m x n integer array grid. There is a robot initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m-1][n-1]). The robot can only move either down or right at any point in time. An obstacle and space are marked as 1 or 0 respectively in grid. A path that the robot takes cannot include any square that is an obstacle.

Question You are given an m x n integer array grid. There is a robot initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m-1][n-1]). The robot can only move either down or right at any point in time. An obstacle and space are marked as 1 or 0 respectively in grid. A path that the robot takes cannot include any square

[Solved] You are given an m x n integer array grid. There is a robot initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m-1][n-1]). The robot can only move either down or right at any point in time. An obstacle and space are marked as 1 or 0 respectively in grid. A path that the robot takes cannot include any square that is an obstacle. Read More »

Leetcode solutions MLP Feature Image

[Solved] There is a robot on an m x n grid. The robot is initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m – 1][n – 1]). The robot can only move either down or right at any point in time. Given the two integers m and n, return the number of possible unique paths that the robot can take to reach the bottom-right corner.

Question There is a robot on an m x n grid. The robot is initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m – 1][n – 1]). The robot can only move either down or right at any point in time. Given the two integers m and n, return the number of possible unique paths that the

[Solved] There is a robot on an m x n grid. The robot is initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m – 1][n – 1]). The robot can only move either down or right at any point in time. Given the two integers m and n, return the number of possible unique paths that the robot can take to reach the bottom-right corner. Read More »

Leetcode solutions MLP Feature Image

[Solved] Given the head of a linked list, rotate the list to the right by k places.

Question Given the head of a linked list, rotate the list to the right by k places. Example 1: Input: head = [1,2,3,4,5], k = 2 Output: [4,5,1,2,3] Example 2: Input: head = [0,1,2], k = 4 Output: [2,0,1] Constraints: The number of nodes in the list is in the range [0, 500]. -100 <= Node.val <= 100 0 <= k

[Solved] Given the head of a linked list, rotate the list to the right by k places. Read More »

Leetcode solutions MLP Feature Image

[Solved] Given a string s consisting of words and spaces, return the length of the last word in the string. A word is a maximal substring consisting of non-space characters only.

Question Given a string s consisting of words and spaces, return the length of the last word in the string. A word is a maximal substring consisting of non-space characters only. Example 1: Input: s = “Hello World” Output: 5 Explanation: The last word is “World” with length 5. Example 2: Input: s = ” fly me to the moon ” Output:

[Solved] Given a string s consisting of words and spaces, return the length of the last word in the string. A word is a maximal substring consisting of non-space characters only. Read More »

Leetcode solutions MLP Feature Image

[Solved] You are given an integer array nums. You are initially positioned at the array’s first index, and each element in the array represents your maximum jump length at that position. Return true if you can reach the last index, or false otherwise.

Question You are given an integer array nums. You are initially positioned at the array’s first index, and each element in the array represents your maximum jump length at that position. Return true if you can reach the last index, or false otherwise. Example 1: Input: nums = [2,3,1,1,4] Output: true Explanation: Jump 1 step from index 0 to 1, then

[Solved] You are given an integer array nums. You are initially positioned at the array’s first index, and each element in the array represents your maximum jump length at that position. Return true if you can reach the last index, or false otherwise. Read More »

Leetcode solutions MLP Feature Image

[Solved] Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Question Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. A subarray is a contiguous part of an array. Example 1: Input: nums = [-2,1,-3,4,-1,2,1,-5,4] Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6. Example 2: Input: nums = [1] Output: 1 Example 3: Input: nums

[Solved] Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. Read More »

Leetcode solutions MLP Feature Image

[Solved] Implement pow(x, n), which calculates x raised to the power n (i.e., xn).

Question Implement pow(x, n), which calculates x raised to the power n (i.e., xn). Example 1: Input: x = 2.00000, n = 10 Output: 1024.00000 Example 2: Input: x = 2.10000, n = 3 Output: 9.26100 Example 3: Input: x = 2.00000, n = -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25 Constraints: -100.0 < x < 100.0

[Solved] Implement pow(x, n), which calculates x raised to the power n (i.e., xn). Read More »

Leetcode solutions MLP Feature Image

[Solved] Given an array of strings strs, group the anagrams together. You can return the answer in any order. An Anagram is a word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once.

Question Given an array of strings strs, group the anagrams together. You can return the answer in any order. An Anagram is a word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once. Example 1: Input: strs = [“eat”,”tea”,”tan”,”ate”,”nat”,”bat”] Output: [[“bat”],[“nat”,”tan”],[“ate”,”eat”,”tea”]] Example 2: Input: strs = [“”] Output: [[“”]]

[Solved] Given an array of strings strs, group the anagrams together. You can return the answer in any order. An Anagram is a word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once. Read More »

Leetcode solutions MLP Feature Image

[Solved] You are given an n x n 2D matrix representing an image, rotate the image by 90 degrees (clockwise). You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.

Question You are given an n x n 2D matrix representing an image, rotate the image by 90 degrees (clockwise). You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation. Example 1: Input: matrix = [[1,2,3],[4,5,6],[7,8,9]] Output: [[7,4,1],[8,5,2],[9,6,3]] Example 2: Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]] Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]

[Solved] You are given an n x n 2D matrix representing an image, rotate the image by 90 degrees (clockwise). You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation. Read More »

Scroll to Top