Site icon Machine Learning Projects

Object Detection using SSD – with source code – easiest way – fun project –2023

Machine Learning Projects

So guys in today’s blog we will see how can we perform Object Detection using SSD in the simplest way possible. SSDs are very fast in Object Detection when compared to those big boys like R-CNN or Fast R-CNN, etc.

This is going to be a very fun project with endless use cases. So without any further due, Let’s do it…

Create a conda environment and install the required libraries

conda create -n od python=3.9
conda activate od
pip install opencv-python numpy imutils

Code for Object Detection using SSD…

from import FPS
import numpy as np
import imutils
import cv2

use_gpu = True
live_video = False
confidence_level = 0.5
fps = FPS().start()
ret = True
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
           "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
           "dog", "horse", "motorbike", "person", "pottedplant", "sheep",
           "sofa", "train", "tvmonitor"]

COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))

net = cv2.dnn.readNetFromCaffe('ssd_files/MobileNetSSD_deploy.prototxt', 'ssd_files/MobileNetSSD_deploy.caffemodel')

if use_gpu:
    print("[INFO] setting preferable backend and target to CUDA...")

print("[INFO] accessing video stream...")
if live_video:
    vs = cv2.VideoCapture(0)
    vs = cv2.VideoCapture('test.mp4')

while ret:
    ret, frame =
    if ret:
        frame = imutils.resize(frame, width=400)
        (h, w) = frame.shape[:2]

        blob = cv2.dnn.blobFromImage(frame, 0.007843, (300, 300), 127.5)
        detections = net.forward()

        for i in np.arange(0, detections.shape[2]):
            confidence = detections[0, 0, i, 2]
            if confidence > confidence_level:
                idx = int(detections[0, 0, i, 1])
                box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
                (startX, startY, endX, endY) = box.astype("int")

                label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100)
                cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2)

                y = startY - 15 if startY - 15 > 15 else startY + 15
                cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
        cv2.imshow('Live detection',frame)

        if cv2.waitKey(1)==27:



print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

NOTE – You will see some results like these after the successful execution of the code. I am using GPU that’s why FPS is quite high but if you are not using GPU, you might see lower FPS.

Download files for Object Detection using SSD…

Do let me know if there’s any query regarding Object Detection using SSD by contacting me on email or LinkedIn.

So this is all for this blog folks, thanks for reading it and I hope you are taking something with you after reading this and till the next time ?…


Check out my other machine learning projectsdeep learning projectscomputer vision projectsNLP projectsFlask projects at

Exit mobile version